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distribution function (PDF) sets (CTEQ6.5) are obtained. The new quark distributions are

consistently higher in the region x ∼ 10−3 than previous ones, with important implications

on hadron collider phenomenology, especially at the LHC. The uncertainties of the parton
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1. Introduction

Global QCD analysis of the parton structure of the nucleon has made significant progress in

recent years. However, there remain many gaps in our knowledge of the parton distribution

functions (PDFs), especially with regard to the strange, charm and bottom degrees of

freedom. The uncertainties of the PDFs remain large in both the very small-x and the

large-x regions — in general for all flavors, but particularly for the gluon. Uncertainties

due to the input PDFs will be one of the dominant sources of uncertainty in some precision
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measurements (such as the W mass) [1], as well as in studying signals and backgrounds

for New Physics searches at the Fermilab Tevatron and the CERN Large Hadron Collider

(LHC). Thus, improving the accuracy of the global QCD analysis of PDFs is a high priority

task for High Energy Physics.

With the accumulation of extensive precision deep inelastic scattering (DIS) cross sec-

tion measurements of both the neutral current (NC) and charged current (CC) processes

at HERA I (and even more precise data from HERA II to come soon), it is necessary to

employ reliable theoretical calculations that match the accuracy of the best data in the

global analysis. In the perturbative QCD framework (PQCD), this requires, among other

things, a proper treatment of the heavy quark mass parameters.1 There are many aspects

to a proper treatment of general mass effects, involving both dynamics (consistent factor-

ization in PQCD, with quark massess) and kinematics (physical phase space constraints

with heavy flavor masses that are not satisfied by the simplest implementation of the zero-

mass parton model formula). Some aspects of these considerations have been applied in

existing work on global QCD analysis; however, in most cases, not all relevant effects have

been consistently taken into account.

In this paper, we present a systematic discussion of the relevant physics issues, and

provide a new implementation of the general formalism for all DIS processes in a uni-

fied framework (section 2). We show the magnitude of the mass effects, compared to the

conventional zero-mass (ZM) parton formalism (section 3). We then apply this simple

implementation of the general mass formalism to a precise global analysis of PDFs, includ-

ing the full HERA I cross section data sets for both NC and CC processes, and taking

into account all available correlated systematic errors (section 4). We investigate in some

depth the parametrization dependence of the global analysis, assess the uncertainties of the

PDFs in the new analysis, and compare the new results with those of CTEQ6.1 [2] (which

was based on the ZM parton formalism) and other current PDFs [3] (section 5). The

results, designated as CTEQ6.5 PDFs, have important implications for hadron collider

phenomenology at the Tevatron and the LHC. Finally, we summarize our main results,

discuss their limitations, and mention the challenges ahead (section 7). Some preliminary

results of this investigation have been presented at the DIS2006 Workshop [4].

2. General mass PQCD: formalism and implementation

The quark-parton picture is based on the factorization theorem of PQCD. The conventional

proof of the factorization theorem proceeds from the zero-mass limit for all the partons —

a good approximation at energy scales (generically designated by Q) far above all quark

mass thresholds (designated by Mi). This clearly does not hold when Q/Mi is of order 1.2

It has been recognized since the mid-1980’s that a consistent treatment of heavy quarks in

PQCD over the full energy range from Q . Mi to Q À Mi can be formulated [5]. (This is

1Our discussions will be independent of the flavor of the heavy quark. In practice, “heavy quarks” means

charm and bottom. The top quark is so heavy that it can generally be treated as a heavy particle, not a

parton.
2Heavy quarks, by definition, have Mi À ΛQCD. Hence we always assume Q, Mi À ΛQCD.
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most clearly seen in the CWZ renormalization scheme [6].) The basic physics ideas were

further developed in [7]; this approach has become generally known as the ACOT scheme.

In 1998, Collins gave a general proof (order-by-order to all orders of perturbation theory)

of the factorization theorem that is valid for non-zero quark masses [8]. The resulting

theoretical framework is conceptually simple: it represents a straightforward generalization

of the conventional zero-mass (ZM) modified minimal subtraction (MS) formalism. This

general mass (GM) formalism is what we shall adopt.

The implementation of the general mass formalism requires attention to a number of

details, both kinematical and dynamical, that can affect the accuracy of the calculation.

Physical considerations are important to ensure that the right choices are made between

perturbatively equivalent alternatives that may produce noticeable differences in practi-

cal applications. We now systematically describe these considerations, and spell out the

specifics of the new implementation used in our study. For simplicity, we shall often focus

on the charm quark, and consider the relevant issues relating to the calculation of structure

functions at a renormalization and factorization scale µ (usually chosen to be equal to Q)

in the neighborhood of the charm mass Mc. The same considerations apply to the other

heavy quarks, and to the calculation of cross sections.

2.1 The factorization formula

Let the total inclusive differential cross section for a general DIS scattering process be

written as
d2σ

dxdy
= N

∑

λ

Lλ(x, y)F λ(x,Q) (2.1)

where F λ(x,Q) are structure functions representing the forward Compton amplitudes for

the exchanged vector bosons on the target nucleon, Lλ(x, y) are kinematic factors originat-

ing from the (calculable) lepton scattering vertices, and N is an overall factor dependent

on the particular process.3 We follow the notation of ref. [9], from which detailed formulas

for the above factors can be found. The PQCD factorization theorem for the structure

functions has the general form

F λ(x,Q2) =
∑

a

fa ⊗ ω̂λ
a =

∑

a

∫ 1

ζ

dξ

ξ
fa(ξ, µ) ω̂λ

a

(
x

ξ
,
Q

µ
,
Mi

µ
, αs(µ)

)
. (2.2)

Here, the summation is over the active parton flavor label a, fa(x, µ) are the parton

distributions at the factorization scale µ, ω̂λ
a are the Wilson coefficients (or hard-scattering

amplitudes) that can be calculated order-by-order in perturbation theory, and we have

implicitly set the renormalization and factorization scales to be the same. The lower limit

3The summation index λ can represent either the conventional tensor indices {1, 2, 3} or the helicity

labels {Right,Left, Longitudinal}. In the zero-mass case, these are the only independent structure func-

tions. However, in the general mass case, there are five independent hadronic structure functions. In

addition to the usual two parity (and chirality) conserving, say F2 and Flong, and one parity violating, F3,

structure functions, there are also two chirality-violating amplitudes (one each for F2 and Flong). These

are proportional to gRgL, where gR,L are the electroweak couplings of the vector boson to the quark line

to which it is attached. [7]
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of the convolution integral ζ is usually taken to be x = Q2/2q · p — the Bjorken x — in

the conventional ZM formalism; but this choice needs to be re-considered when the Wilson

coefficients include heavy quark mass effects, as we shall do in section 2.4 below. In most

applications, it is convenient to choose µ = Q; but there are circumstances in which a

different choice becomes useful. For DIS at order αs and beyond, the results are known to

be quite insensitive to the choice of µ.

2.2 The (scheme-dependent) parton distributions and summation over parton

flavors

The summation
∑

a over “parton flavor” label a in the factorization formula, eq. (2.2), is

determined by the factorization scheme chosen to define the Parton Distributions fa(x, µ).

In the fixed flavor number scheme (FFNS), one sums over a = g, u, ū, d, d̄, . . . up to nf

flavors of quarks, where nf is held at a fixed value (3, 4, . . .). For a given nf (say nf = 3),

the nf -FFNS has only a limited range of applicability, since, at order m of the perturbative

expansion, the Wilson coefficients contain logarithm terms of the form αm
s lnm(Q/Mi) for

i > nf , which is not infrared safe as Q becomes large compared to the renormalized mass

of the heavy quark Mi (e.g. Mc,b, in the nf = 3 example).

The more general variable flavor number scheme (VFNS), as defined in Collins’ general

framework [5, 8], is really a composite scheme: it consists of a series of FFNS’s matched

at conveniently chosen match points µi, one for each of the heavy quark thresholds. At µi,

the nf -flavor scheme is matched to the (nf + 1)-flavor scheme by a set of perturbatively

calculable finite renormalizations of the coupling parameter αs, the mass parameters {Mi},
and the parton distribution functions {fa}. The matching scale µi can, in principle, be

chosen to be any value, as long as it is of the order of Mi. In practice, it is usually chosen

to be µi = Mi, since it has been known that, in the commonly used (VFNS) MS scheme,

all the renormalized quantities mentioned above are continuous at this point up to NLO

in the perturbative expansion [5]. Normally, when the VFNS is applied at a factorization

scale µ that lies in the interval (µnf
, µnf +1), the nf -flavor scheme is used. Thus the number

of active parton flavors depends on the scale µ— henceforth denoted by nf (µ) — and it

increases by one when µ crosses the threshold µi+1 from below.4

PQCD in the VFNS is free of large logarithms of the kind mentioned above for the

FFNS — it is infrared safe, and hence remains reliable, at all scales µ (∼ Q) À ΛQCD.

In this scheme, the range of summation over “a” in the factorization formula, eq. (2.2), is

0, 1, . . . , nf (µ), where 0 represents the gluon, 1 represents u and ū, etc.

Our implementation of the general mass formalism includes both FFNS and VFNS.

In practice, however, for reasons already mentioned, we shall mostly use the VFNS. The

definition of parton distributions in the scheme described above is exactly the same as

4Since, once properly matched, all the component FFNS’s are well defined, and can co-exist at any scale,

it is possible to choose the transition from the nf - to the (nf + 1)-flavor scheme at a transition scale that

is different from the matching scale µi. It is, arguably, even desirable to make the transition at a scale that

is several times the natural matching scale µi = Mi, since, physically, a heavy quark behaves like a parton

only at scales reasonably large compared to its mass parameter. But, with the rescaling prescription that

we shall adopt in section 2.4, the same purpose can be achieved with less technical complications.
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that of previous CTEQ PDFs, all being based on [5]. (It is also shared, essentially, by

most global analysis groups, e.g. MRST [10].) The improvements of the formalism over

previous analyses reside in the consistent and systematic treatment of mass effects in the

Wilson coefficients and in the phase space integral of eq. (2.2) that we shall now describe

and clarify.

2.3 The summation over (physical) final-state flavors

For total inclusive structure functions, the factorization formula, eq. ( 2.2), contains an

implicit summation over all possible quark flavors in the final state. One can write,

ω̂a =
∑

b

ω̂b
a (2.3)

where “b” denotes final state flavors, and ω̂b
a is the perturbatively calculable hard cross

section for an incoming parton “a” to produce a final state containing flavor “b ”. (Cf. the

Feynman diagrams contributing to the calculation of the hard cross section in section 2.5

below. A caveat on the definition of ω̂b
a, is described in section 2.6.)

It is important to emphasize that “b” labels quark flavors that can be produced phys-

ically in the final state; it is not a parton label in the sense of initial-state parton flavors

described in the previous subsection. The latter (labelled a) is a theoretical construct and

scheme-dependent (e.g. it is fixed at three for the 3-flavor scheme); whereas the final-state

sum (over b) is over all flavors that can be physically produced. The initial state parton “a”

does not have to be on the mass-shell. But the final state particles “b” should be on-mass-

shell in order to satisfy the correct kinematic constraints and yield physically meaningful

results.5 Thus, in implementing the summation over final states, the most relevant scale

is W — the CM energy of the virtual Compton process — in contrast to the scale Q that

controls the initial state summation over parton flavors (see next subsection).

The distinction between the two summations is absent in the simplest implementation

of the conventional (i.e., textbook) zero-mass parton formalism: if all quark masses are set

to zero to begin with, then all flavors can be produced in the final state. This distinction

becomes blurred in a zero-mass (ZM) VFNS — the one commonly used in the literature

(including previous CTEQ analyses) – -where the number of effective parton flavors is

incremented as the scale parameter µ crosses a heavy quark threshold, but other kinematic

and dynamic mass effects are omitted. Thus, the implementation of the ZM VFNS by

different groups can be different, depending on how the final-state summation is carried

out. This detail is usually not spelled out in the relevant papers.

It should be obvious that, in a proper implementation of the general mass (GM)

formalism, the distinction between the initial-state and final-state summation must be

unambiguously, and correctly, observed. For instance, even in the 3-flavor regime (when

c and b quarks are not counted as partons), the charm and bottom flavors still need to be

counted in the final state — at LO via W+ + d/s → c or W− + u/c → b, and at NLO via

5Strict kinematics would require putting the produced heavy flavor mesons or baryons on the mass shell.

In the PQCD formalism, we adopt the approximation of using on-shell final state heavy quarks in the

underlying partonic process.
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the gluon-fusion processes such as W+ + g → s̄ + c or γ + g → cc̄ (bb̄), provided there is

enough CM energy to produce these particles.

This issue immediately suggests that one must also give careful consideration to the

proper treatment of the integral over the final-state phase space and other kinematical

effects in the problem.

2.4 Kinematic constraints and rescaling

Once mass effects are taken into account, kinematic constraints have a significant impact

on the numerical results of the calculation; in fact, they represent the dominant factor in

the threshold regions of the phase space. In DIS, with heavy flavor produced in the final

state, the simplest kinematic constraint that comes to mind is

W − MN >
∑

f

Mf (2.4)

where W is the CM energy of the vector-boson-nucleon scattering process, MN is the

nucleon mass, and the right-hand side is the sum of all masses in the final state. Since

W is related to the familiar kinematic variables (x,Q) by W 2 − M2
N = Q2(1 − x)/x, this

constraint can be imposed by a step function θ(W −MN −∑
f Mf ) condition on the right-

hand side of eq. (2.2), irrespective of how, or whether, mass effects are incorporated in

the convolution integral. Although that simple approach would represent an improvement

over ignoring the kinematic constraint eq. (2.4), it is too crude, and can lead to undesirable

discontinuities.

A much better physically motivated approach is based on the idea of rescaling. The

simplest example is given by charm production in the LO CC process W +s → c. It is well-

known that, when the final state charm quark is put on the mass shell, the appropriate

momentum fraction variable for the incoming strange parton, χ in eq. (2.2), is not the

Bjorken x, but rather χ = x(1 + M2
c /Q2) [11]. This is commonly called the rescaling

variable.

The generalization of this idea to the more prevalent case of NC processes, say γ/Z +

c → c (or any other heavy quark), took a long time to emerge [12], because this partonic

process implies the existence of a hidden heavy particle — the c̄ — in the target fragment.

The key observation was, heavy objects buried in the target fragment are still a part of

the final state, hence must be included in the phase space constraint, eq. (2.4). Taking this

effect into account, and expanding to the more general case of γ/Z + c → c + X, where

X contains only light particles, it was proposed that the convolution integral in eq. (2.2)

should be over the momentum fraction range χc < ξ < 1, where

χc = x

(
1 +

4M2
c

Q2

)
. (2.5)

In the most general case where there are any number of heavy particles in the final state,

the corresponding variable is (cf. eq. (2.4))

χ = x

(
1 +

(Σf Mf )2

Q2

)
. (2.6)
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C

D

Figure 1: Kinematics of rescaling due to Mc in the (x, Q) plane for NC DIS. The curves are

constant χ (χc) lines. They asymptotically approach the corresponding Bjorken x values (vertical

lines). The solid diagonal straight line marks the kinematic reach of HERA.

This rescaling prescription has been referred to as ACOTχ in the recent literature [12, 10].

Figure 1 helps to visualize the physical effects of rescaling for charm production in NC

DIS. In this plot, we show constant x and constant χc lines. The threshold for producing

charm corresponds to the line W = 2Mc (lower right corner), which coincides with χc = 1.

Far above threshold, χc ' x. Close to the threshold, χc can be substantially larger than x.

For fixed (and sufficiently large) x, as Q increases (along a vertical line upward in the plot,

such as x = 0.1), the threshold is crossed at Q2 = 4M2
c x/(1 − x) (point C on the plot),

beyond which χc decreases, approaching x asymptotically (point D on the plot). For fixed

Q, as x decreases from 1 (along a horizontal line to the left), the threshold is crossed at

x =
(
1 + 4M2

c /Q2
)−1

, below which χc is shifted relative to x according to eq. (2.5) or (2.6).

Rescaling shifts the momentum variable in the parton distribution function fa(ξ, µ) in

eq. (2.2) to a higher value than in the zero-mass case. For instance, at LO, the structure

functions at a given point A are proportional to f(x,Q) in the ZM formalism; but, with

ACOTχ rescaling, this becomes f(χc, Q). The shift x → χc is equivalent to moving point

A to point B in figure 1.

In the region where (Σf Mf )2 /Q2 is not too small, especially when f(ξ, µ) is a steep

function of ξ, this rescaling can substantially change the numerical result of the calculation.

It is straightforward to show that, when one approaches a given threshold (MN + Σf Mf )

from above, the corresponding rescaling variable χ → 1. Since generally fa(ξ, µ) −→ 0 as

ξ → 1, rescaling ensures a smoothly vanishing threshold behavior for the contribution of the

– 7 –
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Figure 2: Partonic processes included in the theoretical nf -flavor scheme calculations (nf = 3, 4)

at order α0
s and α1

s. Generalization to higher orders is straightforward.

heavy quark production term to all structure functions. This results in a universal,6 and

intuitively physical, realization of the threshold kinematic constraint for all heavy flavor

production processes.

2.5 Hard scattering amplitudes and the SACOT scheme

The last quantity in the general formula eq. (2.2) that we need to discuss is the hard

scattering amplitude ω̂λ
a

(
x, Q

µ
, Mi

µ
, αs(µ)

)
. These amplitudes are perturbatively calculable.

To facilitate the discussion, consider the special case of charm production in a neutral

current process. At LO and NLO, the Feynman diagrams that contain at least one heavy

quark (c or c̄) in the final state are depicted in figure 2 for both the 3-flavor (lower) and

4-flavor (upper) schemes.

For µ < Mc, the 3-flavor scheme applies. In this scheme, there is no charm parton in

the initial state. The only diagram contributing to charm production at order αs is the

gluon fusion diagram. If Mc is kept as nonzero, the hard scattering amplitude is finite; and

the calculation is relatively straightforward. The hard scattering amplitude depends only

on (x,Q/Mc), not on the factorization scale µ.

For µ > Mc, the 4-flavor scheme applies. The LO subprocess γ/Z+c → c, with a charm

parton in the initial state, is of order α0
s. It represents the resummed result of collinear

singularities of the form αn
s lnn(µ/Mc), n = 1, 2, . . ., from Feynman diagrams of all orders

in n. Since the αs ln(µ/Mc) terms due to the NLO diagrams shown in figure 2 are already

included in the resummation, they must be subtracted to avoid double-counting. These are

6Since it is imposed on the (universal) parton distribution function part of the factorization formula.
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denoted by the “subtraction terms” in figure 2. The subtraction term associated with the

gluon-initiated diagram is of the form αs ln(µ/Mc)ω
0(Mc)

∫ 1
χ
(dξ/ξ) g(ξ, µ)Pgq(χ/ξ) where

ω0(Mc) is the LO hard scattering amplitude and Pgq is the g → q splitting function of

QCD evolution at order αs. The specific choices adopted for χ, µ, and the Mc dependence

of ω0(Mc) together precisely define the chosen factorization scheme. To be consistent,

the same prescription must be used in evaluating the LO term, which takes the form

c(χ, µ)ω0(Mc), wherec(χ, µ) is the charm parton distribution (cf. eq. (A.6) in appendix A).

The relation between the choice of χ (in the form of the rescaling variable χc) and

the proper treatment of kinematics was discussed in the previous subsection (Cf. also

appendix A). The freedom associated with the choice of the Mc dependence of the hard

scattering amplitudes was discussed in refs. [8, 13]. The simplest choice that retains full

accuracy can be stated succinctly as: keep the heavy quark mass dependence in the Wilson

coefficients for partonic subprocesses with only light initial state partons (g, u, d, s); but

use the zero-mass Wilson coefficients for subprocesses that have an initial state heavy

quark (c, b). This is known as the SACOT scheme. For the 4-flavor scheme to order αs

(NLO), this calculational scheme entails: (a) keep the full Mc dependence of the gluon

fusion subprocess; (b) for NC scattering (γ/Z exchanges), set all quark masses to zero in

the quark-initiated subprocesses; and (c) for CC scattering (W± exchange), set the initial-

state quark masses to zero, but keep the final-state quark masses on shell (Cf. [7, 13]).

2.6 Choice of factorization scale

The final choice that has to be made is that of factorization scale µ, which connects the

(soft) parton distributions and the hard scattering amplitude. Provided the matching

between the LO and the subtraction terms are correctly implemented as described above

(section 2.5), the difference due to different choices of µ is formally of one order higher

than that of the perturbative calculation — as long as µ is of the same order of magnitude

as the physical hard scattering scale, say Q. However, in the threshold region, the scale

dependence can be quite sensitive to the treatment of kinematics because of heavy quark

mass effects. On the other hand, it was shown in ref. [12] that, once the kinematics

are handled correctly according to the ACOTχ prescription (sections 2.2), (2.4), the µ

dependence of the overall calculation becomes very mild.

In the conventional ZM formalism, the natural choice of the hard scale (the typical

virtuality) for the DIS process is Q. Hence µ = Q is almost universally used in all practical

calculations. In the GM formalism, we should re-examine the possible choices.

The total inclusive structure function F tot
i is infrared safe. Consider the simple case of

just one effective heavy flavor, charm (i.e. below the bottom and top production thresholds),

F tot
i = F light

i + F c
i , (2.7)

for any given flavor-number scheme (i.e. 3-flavor, 4-flavor, . . . etc.). If we use the same

factorization scale µ for both terms, then the sum is insensitive to the value of µ — the

logarithmic µ-dependence of the individual terms cancel each other. Since the right-hand

side of eq. (2.7) is dominated by the light-flavor term F light
i , and the natural choice of scale

– 9 –
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for this term is µ = Q, it is reasonable to use this choice for both terms. This turns out

to be a good choice in practice as well, since the resulting F tot
i is then continuous across

the boundary separating the 3-flavor region (µ < Mc) from the 4-flavor region (µ > Mc)

— the line Q = Mc in figure 1.

Experimentally, the semi-inclusive DIS structure functions for producing a charm par-

ticle in the final state F c
i is often presented. Unfortunately, theoretically, F c

i (x,Q,Mc) is

not infrared safe beyond NLO. One may nonetheless perform comparison of NLO theory

with experiment with the understanding that the results are intrinsically less reliable, and

they can be sensitive to the choice of parameters. The analytic expressions for F c
i in PQCD

suggest that the typical virtuality for this process is
√

Q2 + M2
c instead of Q. For the fac-

torization scale in this case, the choice µ =
√

Q2 + M2
c appears to be natural. This choice

has the added advantage that µ > Mc for all physical values of Q; hence, in practice, with

this choice, one stays always in the 4-flavor regime, avoiding the need to make a transition

from 3- to 4-flavor calculations when Q crosses the value Mc, cf. figure 1.7

3. Differences between ZM and GM calculations

The GM version of the n-flavor scheme calculation reduces to the conventional ZM one

when the hard scale Q is much larger than the quark mass Mn. Thus differences between

the two schemes are only expected to be noticeable in the Q ∼ Mn region. Similarly, the

differences between the GM and ZM versions of the VFNS should occur mostly around the

charm, bottom and top threshold regions of the (x,Q) plane.

In general, among the various mass effects described in the previous section, the most

significant one numerically is that due to rescaling, f(x, µ) → f(χ, µ). The size of this

effect depends on: (i) the size of the shift x → χ; and (ii) the rate of change of f(x, µ) at

the relevant value of x. As can be seen from figure 1, the size of the shift x → χ is largest

when Q ∼ Mn. According to (ii) above, however, this effect will be significant only when

f(x, µ) is large and rapidly varying in x. As we shall see below, this effect shows up most

prominantly at small x.

In the left panel of figure 3, we show the fractional differences between the GM and ZM

calculations for F γ
2 (x,Q) over the (x,Q) plane. The magnitude of the fractional difference

(in percentage) is represented by the color coding shown along the right vertical axis, and

by the dashed contour lines. The light solid curves are constant χ lines, taking into account

the c and b quark masses. The kinematic boundary (blue line) corresponds to the HERA

energy reach. We see that the expectations of the previous paragraph are borne out.

Mass effects can be more readily seen for physical quantities that vanish in the ZM

limit. The most obvious example is the longitudinal structure function in DIS, FL(x,Q),

which vanishes at LO in the ZM formalism. It is therefore useful to examine the impor-

tance of mass effects in FL quantitatively. In the right panel of figure 3, we show the

fractional differences between the GM and ZM calculations for F γ
L(x,Q) over the (x,Q)

plane. Compared to the F2 case, we see that, in addition to the effects of rescaling, the

7There is no physical significance to the transition of Q across the value Mc. The physical threshold for

producing charm is at W = 2Mc. The ACOTχ prescription ensures continuity across this threshold.
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Figure 3: Fractional differences in percentages between the general-mass (GM) and zero-mass

(ZM) calculations of F γ
2 (left plot) and F γ

L (right plot), represented by color coding marked along

the right-side vertical axis and by the dashed contour curves.

mass effects in the hard scattering is quite prominent. (Notice the different vertical scales

of the two plots.) We see that the differences are more noticeable and spread wider in the

charm and bottom threshold region than for the F2 case, due to the additional mass effects

in the hard scattering amplitude.

The differences between the GM and ZM calculations demonstrated here will have an

impact on the global QCD analysis of PDFs, since the precision DIS data sets from both

fixed-target and HERA cover the kinematic region highlighted in the above plots. Going

from a ZM to a GM global analysis, the PDFs will undergo some re-alignment among

themselves. And, for reasons described above, noticeable differences in the predictions for

FL are expected.

4. New global analysis

We now apply the improved implementation of the GM formalism to the global QCD

analysis of the full HERA I DIS cross section data sets (cf. next subsection), along with

fixed-target DIS, Drell-Yan (DY) data sets and Tevatron Run I inclusive jet production

data sets that were used in previous CTEQ global PDF studies, in order to obtain the

most precisely determined parton distributions possible.

4.1 Input to the analysis

Previous CTEQ global analyses of PDFs used structure function data for all available

DIS experiments. By now, both H1 and ZEUS experiments have published detailed cross

section data from the HERA I runs (1994 - 2000) for both NC and CC processes. We

are able to use these cross section data directly in the global analysis, so that the new

analysis is free of the model-dependent assumptions that usually go into the extraction of
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H1

94-97 CC σtot [14]

96-97 NC σtot [15]

NC F c
2 [16]

98-99 e−p NC σtot [17]

CC σtot [17]

99-00 e+p NC σtot [18]

CC σtot [18]

NC σc [19, 20]

NC σb [19, 20]

e−p NC σtot [18]

ZEUS

94-97 e+p CC σtot [21]

96-97 NC σtot [22]

NC F c
2 [23]

98-99 e−p NC σtot [24]

CC σtot [25]

NC F c
2 [26]

99-00 e+p NC σtot [27]

CC σtot [28]

Table 1: HERA I table sets used in the global analysis.

structure functions. This is important since, in addition to the dominant F γ,γZ
2 , we can

also gain model-independent information on the longitudinal and parity violating structure

functions F γ,γZ
L and F γZ

3 from this more comprehensive study. For this new effort to yield

more accurate PDFs, and to produce more reliable predictions on the various structure

functions mentioned above, it is crucial to use the available correlated systematic errors in

the global analysis, as we shall discuss below.

The HERA I cross section data sets that are included in this analysis consist of the

total inclusive NC and CC DIS processes, as well as the semi-inclusive DIS processes with

tagged final state charm and bottom mesons. They are listed in table 1.

These data are supplemented by fixed-target and hadron collider data sets used in the

previous CTEQ global fits: BCDMS, NMC, CCFR, E605 (DY), E866 proton-deuteron DY

ratio, CDF W -lepton asymmetry, and CDF/D0 inclusive jet production. Details and refer-

ences to these can be found in ref. [2]. We adopt the same Q- and W - cuts on experimental

data as in ref. [2]; and the stability of our results with respect to varying these cuts has

been studied and reported in ref. [29].

4.2 Parametrization of non-perturbative initial PDFs

The parametrization of the non-perturbative parton distribution functions is an impor-

tant aspect of global QCD analysis since the robustness and reliability of the resulting

PDFs depends on a delicate balance between allowing enough flexibility in the functional

forms adopted to represent the unknown physics on the one hand, and avoiding over-

parametrization that exceeds the constraining power of the available experimental input

on the other.

For this round of analysis, we have carefully re-examined this issue, and tried a variety

of functional forms, including exploring the number of degrees of freedom associated with

each parton flavor that current experimental data can constrain. (A more detailed discus-

sion is given in section 5 on quantifying uncertainties). Results that are common to many

reasonable choices of parametrization are considered trustworthy; the most representative

among the stable fits are then chosen as the new standards. This effort results in some
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minor streamlining of the parametrization used in previous CTEQ analyses [2]. Details are

given in appendix B.

As with the previous analysis, we choose the input scale of µ0 = 1.3 GeV (which is also

the charm quark mass, Mc, used in our calculations). We assume the strange and anti-

strange quarks are equal to each other (s = s̄), and are proportional to the non-strange

sea combination (ū + d̄) at µ0. We find that, within the current global analysis setup, the

proportionality constant κ (defined as (s + s̄)/(ū + d̄)) is only weakly constrained. For the

purpose of the current analysis, we use the common value of κ = 0.5 (at µ0 = 1.3 GeV)

that is well within the allowed range. Finally, as in all existing global analyses, we assume

the c and b distributions to be zero at the scale corresponding to their masses, and are

generated by QCD evolution above that.

4.3 New global fits

The new global fit with the improved theoretical calculation and more extensive DIS data

sets results in even better agreement between theory and experiment than the previous fits

of CTEQ6M/CTEQ6.1M [2], CTEQ6HQ [30], and CTEQ6AB [31].8 This is an important

confirmation of the standard model (SM) in general, and the general mass PQCD formalism

described in section 2 in particular.

We choose a new central fit, designated as CTEQ6.5M, and 40 sets of eigenvector

PDFs that form an orthonormal basis characterizing estimated uncertainties in the parton

parameter space according to the Hessian method described in [32, 2]. We shall describe

the characteristics of the central fit in this section, and the full eigenvector sets in a later

section on uncertainties (section 5).

The experimental data that have the most influence on the determination of the PDFs

are, as is well known, the precision DIS total inclusive measurements, along with the

DY experiments (sea quarks), W lepton asymmetry measurements (flavor differentiation),

and collider inclusive jet production measurements (gluon). New to the current global

analysis (in addition to the replacement of NC structure functions by the more complete

cross section data) are the HERA CC total inclusive and NC tagged heavy flavor inclusive

structure functions and cross sections.9 These new data sets are fit quite well in the

new round of global analyses, demonstrating the consistency of the underlying PQCD

framework. However, due to the limited statistics available for these processes, they do

not provide any readily identifiable constraints within the confines of the general global

analysis procedure. More dedicated studies, with targeted techniques, may be needed to

uncover potential physical implications of these data and their HERA II successors. We

shall not pursue these in this paper.

8In terms of the overall χ2, used as a measure of the goodness-of-fit in our global analysis, the decrease

is ∆χ2 ∼ 200 for 2676 data points when the same new data sets are fitted with the ZM theory vs. the GM

theory. This is a significant improvement.
9We remark, as mentioned in section 2.6, the theoretical underpinning for the semi-inclusive heavy

quark production process is less firm than for the total inclusive ones. But it does hold at order αs — the

order at which we perform this analysis. Incidentally, we found that the natural choice of scale for heavy

flavor production cross section calculation mentioned in section 2.6 leads to a noticeable, but marginally

significant, improvement in the overall global fit (compared to the default µ = Q).
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Figure 4: Comparison of the H1 (left) and ZEUS (right) 1999-2000 e+p NC reduced cross section

data sets with the CTEQ6.5M fit.

As examples of the new fits to the HERA I cross section data, we show two plots

comparing the H1 and ZEUS 1999-2000 e+p NC reduced cross section data sets with the

CTEQ6.5M fit. The χ2/Npts (number of data points) for the two data sets are 169/147 and

94/90 respectively. The H1 data set has 6 sources of correlated systematic errors {ri, i =

1, 6}. The optimal shifts of these errors for the CTEQ6.5M fit are {ri} = {0.378, −0.173,

0.413, 0.329, 0.544, −0.515} — all within one σ, and
∑6

i=1 r2
i = 1.012. (The definition of

the ri parameters, as used in our treatment of correlated errors, can be found in appendix

B of [2].) The ZEUS data set has 8 correlated systematic errors. The corresponding shifts

are {ri} = {0.096, −0.110, −0.048, 0.385, −0.068, −0.651, −0.376, −1.334} — with only

the last one being above 1, and
∑8

i=1 r2
i = 2.522. Both are quite reasonable. This pattern

is typical for other HERA data sets. Details are available upon request to the authors.

4.4 New parton distributions

Since both the updates in theory and in experimental input in this global analysis represent

incremental improvements over the previous CTEQ effort, rather than major modifications,

we do not expect drastic shifts in the resulting PDFs. In the following discussions, we will

focus on the few notable differences and their physical implications.

To highlight the changes in the PDFs, we present the ratio of the new CTEQ6.5M dis-

tributions and the corresponding CTEQ6.1M ones, compared to the previously estimated

uncertainty bands of the latter. Figure 5 shows the d-quark, u-quark and gluon distri-
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Figure 5: CTEQ6.5M u, d and g distributions (solid curves) at scale µ = 2GeV normalized to the

corresponding ones from CTEQ6.1M. The shaded areas represent the estimated uncertainty band

from the CTEQ6.1 analysis. The dashed curves represent alternative, equally viable, candidates

for this round of global analysis with slightly different parametrization forms than CTEQ6.5M.

butions at Q = 2 GeV. The CTEQ6.5M/CTEQ6.1M ratios are represented by the solid

curves. To illustrate the universal behavior of the new fits, we also include two dashed

curves in each plot, representing equivalent good fits with alternative parametrizations

mentioned earlier (second paragraph of section 4.2). We do not show separate results on

the sea and the valence distributions, since the u- and d-quark distributions are dominated

by the former at small x, and the latter at large x — both visible in the existing plots.

We see from figure 5 that the new PDFs are indeed generally within the previously

estimated uncertainty bands, demonstrating consistency with previous analyses. There is,

however, a notable departure of the new quark distributions from the old ones in the region

x ∼ 10−3. At the peaks of the ratio curves, the new distributions are up to 20% larger than

CTEQ6.1M, and a factor of two outside the previously estimated error bands. This feature

is shared by all choices of alternative parametrizations (and by all 40 sets of eigenvector

PDFs to be discussed in the next section).

It is not surprising to see a shift in the extracted quark PDFs in the small-x and

low-Q region, since this is where the theoretical treatment of quark mass effect matters

(cf. section 3, particularly the left plot of figure 3). To see that this shift is indeed caused

by mass effects in the new calculation, we compare F2(x,Q2 = 4GeV2) calculated using

CTEQ6.5M PDFs with the general-mass and the zero-mass Wilson coefficients, both nor-

malized to the CTEQ6.1M result (which was obtained in the ZM formalism) in figure 6.

The difference between the two CTEQ6.5M calculations is broadly in the small-x region,

and it is of similar order of magnitude to that seen in figure 5. Since the GM calcula-

tion (solid curve) yields lower values than the ZM calculation (dashed curve), the new

CTEQ6.5M quark PDFs are pushed up in the new global analysis (cf. figure 5) in order to

fit the same DIS data. The deviation of the GM CTEQ6.5M prediction is not far from the

ZM CTEQ6.1M result (horizontal reference line, 1.00) in figure 6 since both are obtained

by fits to the data. However, they are not identical because there are several differences

between the old and new global fits — DIS cross sections vs. structure functions as input,
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Figure 6: Comparison of theoretical calculations of F2 using CTEQ6.1M in the ZM formalism

(horizontal line of 1.00), CTEQ6.5M in the GM formalism (solid curve), and CTEQ6.5M in the ZM

formalism (dashed curve).

Figure 7: Same as figure 5, except that the PDFs are at the scale µ = 5 GeV.

parametrization, etc. — in addition to the treatment of heavy quark mass effects.

The heavy quark mass effects diminish with increasing Q2. However, their effect on

the analysis of experiments at low Q2 produces a change in the PDFs even at larger

Q2. Figure 7 shows the same comparisons at the scale Q2 = 25GeV2. We see that the

difference between CTEQ6.5M and CTEQ6.1M remains significant at this scale. Even at

Q2 ∼ 104 GeV2, the CTEQ6.5 quark PDFs are higher than CTEQ6.1 by ∼ 5 − 6% for

x ∼ 10−3 — approximately the CTEQ6.1 uncertainty at these (x,Q) values. This can

result in significant increases in physical predictions on hadron collider cross sections that

are sensitive to PDFs in this x range, e.g. for W/Z production at the LHC, the increase is

∼ 8%, cf. section 6.

4.5 Mass effects, low-Q2 HERA data, and correlated systematic errors

The noticeable changes in the quark distributions at low x and Q also suggest a closer

examination of the comparison of the new theoretical predictions with the precision DIS
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Figure 8: Four low Q bins of the H1 and ZEUS 1996-97 NC cross section data sets compared to

the CTEQ6.5M fit. Open circles: the ratio data/theory; solid dots: the same data points shifted

by correlated systematic errors. (See text.)

data in this region, particularly because the longitudinal structure function is expected to

play a substantive role in the understanding of the low x and Q HERA cross section data.

Among the high precision HERA I data sets, the 1996-97 e+p NC reduced cross section

measurements include data in the low x and Q region. We examine these data sets (from

H1 [15] and ZEUS [22] ) in a little more detail. The CTEQ6.5 fit to the H1 data set has

χ2/Npts = 107 / 115; the shifts of the 5 correlated systematic errors are {ri} = {0.218,
1.361, −0.472, 0.374, 1.581} with

∑
r2
i = 4.763. The corresponding numbers for the ZEUS

data set are χ2/Npts = 279 / 227; the shifts of the 10 correlated systematic errors are

{ri} = {−1.575, −0.573, −1.407, −0.263, −0.025, −1.203, 1.278, 0.425, −0.258, 0.238},
with

∑
r2
i = 8.244. Aside from the somewhat high overall χ2 for the ZEUS data set (which

was also seen in the previous round of CTEQ6.1 analysis using the corresponding F2 data

set), these numbers indicate reasonable fits.

In figure 8, we show the data from each experiment from the four lowest Q-bins that

pass our Q > 2GeV cut, normalized to the CTEQ6.5M fit. The comparison with H1

data (left plot) shows a pattern of “turnover” of experimental data points (open circles)

at low x with respect to the theory for all four Q2 bins. (For given E and Q, low x

corresponds to high y.) However, this discrepancy disappears when correlated systematic

errors are included in the analysis, as seen from the fact that the solid dots (representing

data corrected by systematic errors) fit rather well the theory predictions (the horizontal

lines corresponding to 1.00 for the ratio). The values for the overall χ2 of this fit as well

as the systematic shifts given in the previous paragraph support this observation.

The comparison of the ZEUS data to the CTEQ6.5M fit (right plot) does not show the
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same systematic low-x turnover. Instead, data (open circles) in the three higher Q bins

are generally below the theory prediction. Again, we see that the differences between the

two go away when correlated systematic errors are included in the analysis (solid dots).

We get acceptable fits in all bins with reasonable systematic shifts.

The low-Q and high-y HERA data has been the subject of special analyses by both H1

and ZEUS collaborations, mainly in the context of extracting the longitudinal structure

function FL(x,Q). Results of QCD fits performed in this regard [15, 33], appear to be

similar to those shown above. Detailed comparison, however, is not possible at present

since details of the theoretical input to the HERA analyses (e.g. issues related to mass

effects described in section 2) has not been specified. As we have shown, heavy quark

mass effects are important in this kinematic region. It would be useful for all future

analyses to include the mass effects.

The observed low-x turnover of the H1 data has been considered a potential problem

for global analyses by the MRST group [34, 35]. This difficulty does not seem to arise in

our analysis. Two possible sources could be responsible for this difference: (i) although

both analyses include quark mass effects, the implementations are not the same (cf. [10],

compared to section 2); (ii) our inclusion of correlated systematic errors in the analysis is

responsible for bringing theory and experiment into agreement, as demonstrated in figure 8.

A more detailed study of these issues is clearly called for.

5. Uncertainties on new parton distributions

Using the new theory implementation and experimental input, we have also performed a

detailed study of the uncertainties of the PDFs, following the Hessian method of [36, 32,

37, 2]. This involves finding a set of eigenvector PDFs that characterize the uncertainties

of the parton distributions around the “best fit” in the parton parameter space.

To ensure that this procedure will yield meaningful results, we first carry out a series of

studies to match our fitting parametrizations with theoretical and experimental constraints:

(i) first we make sure that the best fit is robust by checking that the quality of the global fit

cannot be significantly improved by increasing the number of free parameters or changing

the functional forms; (ii) next, we identify “flat directions” in the resulting parameter space

(representing degrees of freedom that are not constrained by current experimental input)

by diagonalizing the Hessian matrix and examining its variation along the eigenvector

directions; (iii) using that information, we freeze an appropriate subset of parameters and

re-diagonalize the Hessian matrix, which characterizes the quadratic dependence of χ2 on

the fitting parameters in the neighborhood of the minimum. The number of eigenvectors

that can reasonably be determined is around 20 — the same as was used in the CTEQ6.1

analysis.

To arrive at a quantitative estimate of the range of uncertainties in the parton param-

eter space, we examine the global χ2
global that is used by the fitting program as a measure

of the overall “goodness-of-fit”, as the parameters are varied in the neighborhood of the

global minimum. In defining χ2
global, we include weight factors for a few experiments that

have only a small number of data points. The eigenvectors and the weights are arrived at
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Figure 9: CTEQ6.5 PDF uncertainty bands and eigenvector PDF sets.

by the iterative method of ref. [36] so that an adequate fit to every data set is maintained

as far out as possible along the eigenvector directions. This allows us to estimate a confi-

dence range by the condition that, within this range, the fit to every data set is within its

90% confidence level.

In this way we generate the final eigenvector PDF sets so that they span the 90% con-

fidence range for the contributing data sets. The procedure is similar to that formulated in

refs. [37, 32, 2] (which contains more details). There are 40 eigenvector sets, corresponding

to displacements from the central fit in the “+” or “−” senses along each of the eigenvector

directions.10 PDF uncertainty limits for a 90% confidence range for physical predictions

can be calculated from these sets by computing the prediction for each of the 40 sets, and

adding the approximately 20 upward (downward) deviations in quadrature to obtain the

upper (lower) limit.

Figure 9 shows the uncertainty bands determined by this method for u, d, and g PDFs

at the scale Q2 = 4GeV2. The lines represent each of the 40 sets of eigenvector PDFs

normalized to the central fit. The upper (lower) edges of the shaded uncertainty region is

obtained by adding in quadrature the contributions from eigenvector sets that lie above

(below) the central fit at each particular x. We observe that, in some cases (such as for the

gluon at large x), the uncertainty band is dominated by a single pair of eigenvector PDFs,

corresponding to the two senses along a single eigenvector direction.

Figure 10 shows the same uncertainty bands as above, together with curves that show

the fractional uncertainty range from CTEQ6.1 that was determined by a similar procedure.

This shows that the two estimates of PDF uncertainties are broadly comparable with each

other, with a slight tightening of the uncertainty ranges of d quark and gluon distributions

in certain x regions. Of more interest is a comparison of estimated uncertainties of physical

predictions. We shall discuss these in section 6 below.

Because of the improved theoretical and experimental input to this new global analysis,

as well as the much more thorough study of its parametrization dependence, we now have

10The uncertainty bands are not always symmetric in the +/- directions since we independently gener-

ated +/- sets along each eigenvector direction in order to provide somewhat better approximation to the

uncertainties along the flatter directions, where there are deviations from the quadratic approximation.
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Figure 10: CTEQ6.5 PDF uncertainty bands compared to those of CTEQ6.1.

Figure 11: Same CTEQ6.5 PDF uncertainty bands compared to: (i) the CTEQ6.1M (green long-

dash line), CTEQ6A118 (blue short-dash) and MRST04 (black dash-dotted) PDFs; and (ii) upper

and lower edges (red solid lines) of similar uncertainty bands generated with reduced number of

fitting parameters (see text).

greater confidence in these uncertainty estimates than before. Wider applications of the

new results to Standard Model and New Physics processes at hadron colliders will be

pursued.

To compare some currently used PDFs to that of CTEQ6.5, figure 11 shows CTEQ6.1M

(dashed curves), CTEQ6A118 (central fit of the CTEQ6 “αs series” [31]), and MRST04 [3]

PDFs as ratios to CTEQ6.5M. We note that the previous CTEQ PDFs lie mainly within

the new uncertainty bands — except at x ∼ 10−3 for the reasons discussed in the various

subsections of section 4. The MRST04 quark PDFs are closer to CTEQ6.5 in the x ∼ 10−3

region than CTEQ6.1M and CTEQ6AB, presumably because both CTEQ6.5 and MRST04

include mass effects (albeit using different prescriptions) while the other two are in the ZM

formalism. The MRST04 gluon PDFs are within the CTEQ6.5 uncertainty band at large-x;

but they are outside the band around x = 0.3 and at small x.

As mentioned earlier, as a part of our investigation on the robustness of our results,

we have performed uncertainty analysis using different number of variable parameters.

(Other global analysis groups have always used fewer variables.) We found the resulting
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ranges of uncertainty stable if this number is greater than 16. To show how the results

may be affected by too restrictive choices of parameters, figure 11 also include two curves

(red) that correspond to the edges of the uncertainty bands using only 11 free parameters.

We see that these bands are considerably narrower than the stable results represented by

the CTEQ6.5 bands. In other words, over-restricting the degrees of freedom in the input

parametrization at µ0 can significantly overestimate how well the PDFs are measured.

6. Implications for hadron collider physics

The new PDFs have significant implications for hadron collider phenomenology at the

Tevatron and the LHC. We shall mention one example here: the benchmark W production

total cross section σW .

The higher quark distributions in CTEQ6.5 for x ∼ 10−3 lead to an increase in the

predicted values for σW over those based on CTEQ6.1: for Tevatron Run II, we get

∆σW /σW = 3.5%; and for the LHC, ∆σW /σW = 8%.11 The significant increase of the

predicted σW at the LHC reflects the fact that it is directly dependent on PDFs in the

region x ∼ 10−3.

It is also interesting to compare the uncertainties of these predictions as estimated

by the Hessian method. For the Tevatron, we find this uncertainty to be +3.1/−3.0%

for CTEQ6.5, compared to +3.8/−4.4% estimated using CTEQ6.1. For the LHC, the

uncertainty is +4.9/−4.1% for CTEQ6.5, compared to +5.2/−5.9% for CTEQ6.1. Thus

there is a notable reduction in the uncertainty ranges. This is perhaps related to a better

determination of the correlations between different parton flavors, in addition to the obvious

connection to the uncertainties of the individual PDFs (which are rather comparable for

CTEQ6.1 and CTEQ6.5) shown in figure 10.

Detailed results on W/Z production, including differential distributions, and implica-

tions of these new PDFs on other SM and New Physics processes for hadron colliders will

be explored in a separate study.

7. Summary and outlook

We have updated both the theoretical and experimental input to the CTEQ global QCD

analysis in this work. On the theory side, we have used a newly implemented systematic

approach to PQCD, including heavy quark mass effects according to the general formalism

of Collins [8]. Experimentally, we have used all available precision HERA I cross section

data sets, along with well-established fixed target and hadron collider experimental data.

Correlated systematic errors, whenever available, are fully incorporated in the analysis.

In performing this analysis, we have extensively studied the effects due to changes of the

functional form for the initial parton distributions, and to changes in the number of free

parameters allowed in the fits, in order to arrive at stable and physically meaningful results.

11The predicted values for the total W production cross section using CTEQ6.5M is 24.7 nb at the

Tevatron II, and 202 nb at the LHC.
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One noticeable common feature of the new parton distributions, compared to the

previous ones, is the change in the u and d quark distributions around x ∼ 10−3 at low

Q. This results from the inclusion of mass effects in the theory, in conjunction with the

improved (model independent) HERA cross section data, over the previous analysis (using

F2 data that inevitably involve assumption about FL for their extraction).

Within the general-mass PQCD framework, we find broad consistency between the ex-

tensive data sets incorporated in this analysis.12 This permits us to arrive at 90% confidence

level estimates of the uncertainties of PDFs around the chosen central fit, CTEQ6.5M.

These uncertainties are encapsulated in 40 sets of eigenvector PDFs that span the neigh-

borhood of the central fit in the parton parameter space. We found the new uncertainty

bands of the PDFs are slightly narrower than the previous ones, but are generally of the

same order of magnitude.

While progress towards better-determined PDFs in a more precisely formulated PQCD

framework has clearly been made, it is worthwhile to mention some of the limitations of

current global analysis of PDFs that call for continued advances in both theory and exper-

iment. First, due to rather weak existing experimental constraints of the strange quarks,

we have assumed in this work that (s + s̄) is of the same shape as (ū + d̄) and fixed

the proportionality constant κ at the initial scale Q0 during the fit. In principle, better

constraints on κ, and on the possible difference between s and s̄, can come from recent

neutrino scattering experiments by NuTeV [38] and Chorus [39]. However, many open

questions pertaining to the consistency between existing experimental data sets (including

those from the “old” experiments CDHSW and CCFR), nuclear target corrections, and

other issues make the use of these data controversial at present. A dedicated study on the

strangeness sector, designed to delineate the range of uncertainties of both s(x) and s̄(x),

will require a somewhat different tactic, focused on the most relevant degrees of freedom.

In the same vein, we have assumed that all heavy quark partons (c and b) are generated

radiatively by QCD evolution (mainly gluon splitting) at the initial scale Q0. This assump-

tion is not well defined quantitatively, because it depends on the choice of Q0. Furthermore

the assumption itself may be questioned — does intrinsic charm exist in the proton? The

charm and bottom degrees of freedom can be investigated phenomenologically within the

general-mass PQCD framework described here, and is currently under investigation [40].

There has been considerable discussion in recent literature [41] about extending global

QCD analysis to higher orders in αs. This interest is spurred, on the one hand, by the final

availability of the NNLO evolution kernel [42], and on the other hand, by the calculation

of NNLO Wilson coefficients for various hard scattering processes, such as Higgs produc-

tion [43]. In the global analysis of PDFs, NNLO becomes important, and, by implication,

necessary to include, when the theoretical corrections to NLO calculations are comparable

to the errors on the corresponding input experimental data. For DIS and DY processes

12Given the fact that several individual experimental data sets show much larger fluctuations than ex-

pected from normal statistics, and that problems of statistical compatibility between different experiments

of the same type are not uncommon, it is well-known that this complex system is too un-textbook-like to

be amenable to strict “1 σ error” analysis of the PDF parameters. As mentioned in the main body of this

paper, we generally apply 90% confidence level “goodness-of-fit” criteria in our uncertainty studies.
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used in current global analysis, this happens only in the small-x region [42]. However, near

boundaries of the kinematic region, such as small x, the relatively large corrections are

generally associated with higher powers of large logarithms in PQCD. These are symptoms

of the breakdown of the fixed-order perturbation expansion and the need to resum these

logarithms in order to achieve stable and reliable results. Thus, efforts to expand global

QCD analysis to higher orders must go hand-in-hand with work to incorporate resumma-

tion effects (not only confined to small x) in the theoretical framework.13 The importance

of much development work along both lines is evident.

The new CTEQ6.5 PDF sets, including the eigenvector sets discussed in section 5,

will be made available at the CTEQ web site (http://cteq.org/) and through the LHAPDF

system (http://hepforge.cedar.ac.uk/lhapdf/). Because the GM formalism used in this

analysis represents a better approximation to QCD, compared to the previously used ones,

the new PDFs are expected to be closer to the true values than previous ones. In physical

applications at energy scales much larger than Mc and Mb, these PDFs can be convoluted

with commonly available hard-scattering cross sections calculated in the ZM formalism to

obtain reliable predictions, because quark mass effects in the Wilson coefficients will be

negligible. However, for quantitative comparison of a theoretical calculation to precision

DIS data, in the region where Mc/Q and Mb/Q are not very small, the GM formalism

described in section 2 must be applied to the hard scattering cross section together with

CTEQ6.5 PDFs in order to obtain accurate results.
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A. Rescaling

We give here an intuitive derivation of the rescaling prescription (ACOTχ) in the context

of NC charm production. The general idea is applicable to other heavy flavor production

processes, as will become clear later. As mass effects are only relevant at energy scales

comparable to the heavy quark mass (charm in our case), we will focus in this region

where the physically dominant mechanism for charm production is the gluon fusion process

γ∗g → cc̄. The graphical representation of this process is shown as the first term in

figure 12. The analytic expression for this contribution to the physical structure function

13Much recent progress on small-x resummation, and its possible application the global QCD analysis,

has been reported at the DIS2006 Workshop, and reviewed in [44]. Other types of resummation, such as

transverse momentum and threshold resummations, have also come to the fore because of their importance

for LHC phenomenology.
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Figure 12: Contributions to charm production in NC DIS scattering and the physical origin of

the rescaling variable in the PQCD approach.

is

αs(µ)

∫ 1

χc

dz

z
g(z, µ)ω1

γ∗g→cc̄(
χc

z
,Q,Mc) (A.1)

where αsω
1
γ∗g→cc̄ is the order αs partonic cross section, g(z, µ) is the gluon distribution

function. The lower limit of the convolution integral is determined by the boundary of the

final state phase space integration; it is

χc = x(1 + 4M2
c /Q2) (A.2)

with x being the Bjorken x. We recognize that this is just the rescaling variable eq. (2.6)

of section 2.4. For the gluon-fusion subprocess, it follows strictly from kinematics, once we

include the mass of the heavy quarks into consideration.

The gluon fusion term by itself is not infrared safe at high energies. In this limit, the

infrared unsafe part comes from the collinear configuration in the final state phase space

integration. The singular part of ω1
γ∗g→cc̄ is of the form

ω1
γ∗g→cc̄(z, ,Q,Mc) → ln(

Q

Mc
)Pg→c(z) ω0

γ∗c→c (A.3)

where ω0
γ∗c→c represents the order α0

s process γ∗c → c (upper vertex of vector-boson cou-

pling to quark); and Pg→c(z) is the g → c splitting function. This collinear singularity of

the γ∗g → cc̄ contribution can be removed by a subtraction term of the form

−αs(µ) ln(
µ

Mc
)

∫ 1

ζ

dz

z
g(z, µ)Pg→c(

ζ

z
) ω0

γ∗c→c (A.4)

with the introduction of the factorization scale µ (generally chosen to be of order Q). This

term is represented by the second graph in figure 12, where the mark on the internal charm

parton line signifies that its momentum k is collinear to the gluon and k2 ≈ 0. For the

purpose of cancelling the collinear singularity of the gluon-fusion term at high energies (the

Bjorken limit), the variable ζ in this expression can be any expression provided ζ → x in

that limit. In fact, conventionally, it is taken to be just x. The trouble with this choice is

that in the other limit — near the threshold region where W and Q are of the order of Mc

— the subtraction term knows nothing about the kinematics of cc̄ pair production, hence

bears no relation to the physical structure function. The combined result of eqs. (A.1)
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and (A.4) is then completely artificial, hence unphysical, in this region. To remedy this

problem, one only needs to realize the origin of the subtraction term, and make the obvious

choice

ζ = χc = x(1 + 4M2
c /Q2) (A.5)

that is appropriate for the parent gluon-fusion contribution, eq. (A.1). With this choice

of the scaling variable ζ, the subtraction term, eq. (A.4) behaves correctly both in the

high-energy and the low-energy regions.

To complete the derivation, we need to turn to the third diagram of figureγ∗c → c

parton process in the 4-flavor scheme. From the perspective of the preceding discussion,

this term arises from resumming the collinear and soft singularities to all orders in the

perturbation expansion. The leading term in this expansion is given by eq. (A.4) above

(with a positive sign). The resummed result, as illustrated by the diagram, is just

c(ζ, µ) ω0
γ∗c→c (A.6)

Here, the choice of the scaling variable ζ should be dictated by similar considerations as

above: at high energies, ζ must reduce to the Bjorken x; and in the threshold region,

the combined contribution from eq. (A.6) and the subtraction term, eq. (A.4), must be of

higher order in αs. The naive (and common) choice ζ = x satisfies the first criterion, but

not the second. For the same reason discussed before, the choice ζ = χc, eq. (A.5), satisfies

both; hence it is the physically sensible one to use.

With the use of the rescaling variable ζ = χc for the LO γ∗c → c term and the

subtraction term, the sum of the three contributions in figure 12 reduces, by definition, to

the gluon fusion contribution in the threshold region, as it should; and it approaches the

conventional zero-mass PQCD form, LO (γ∗c → c) + (NLO correction), in the high energy

limit, as it should. From this perspective, one sees clearly the dual role of the subtraction

term: in the threshold region, it overlaps substantially with the LO (γ∗c → c) contribution

to make the gluon fusion subprocess the primary production mechanism; and in the high

energy limit, it overlaps with the singular part of the γ∗g → cc̄ contribution, and thus helps

to render the combined order αs terms infrared safe (and yield the true NLO correction to

the perturbative expansion).

B. Parametrization

The parametrization of the parton distributions at µ0 that was used to obtain the CTEQ5

and CTEQ6 parton distributions contained 5 shape parameters (apart from normalization)

for each flavor. However, the global analysis data sets were not sufficiently constraining

to determine all of these parameters, so a number of them were frozen at some particular

values.

In the current effort to match the theoretical parametrization with experimental con-

straints, we achieve the same goal by adopting a simpler form with 4 shape parameters for

the valence quarks uv(x), dv(x), and the gluon g(x):

f(x) = a0 xa1 (1 − x)a2 ea3x +a4x2

. (B.1)
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This can be seen as a plausible generalization of the conventional minimal form

f0(x) = a0 xa1 (1 − x)a2 , (B.2)

which combines Regge behavior at x → 0 and spectator counting behavior at x → 1 in an

economical way.

Both functions, (B.1) and (B.2), are conveniently positive definite. The following

modified logarithmic derivatives of these functions are simple polynomials in x,

φ0(x) = −x (1 − x)
d ln f0

dx
= −a1 + b1x , (B.3)

and

φ(x) = −x (1 − x)
d ln f

dx
= −a1 + b1x + b2x

2 + b3x
3 , (B.4)

where the coefficients {bi} are simple linear combinations of the original ones {ai} in the

exponent of eq. (B.1). So the form eq. (B.1) corresponds to generalizing the logarithmic

derivative from a linear function φ0(x) to a cubic polynomial φ(x), and follows in the

spirit of using polynomials to approximate unknown functions that have no known sin-

gularities. The only practical question is whether this polynomial generalization contains

enough flexibility to represent the physical PDFs that we are trying to determine. Our

investigation indicates that this is the case, since significantly better fits cannot be achieved

by introducing additional parameters or by changing the functional forms.

We continue to use the same parametrizations for ū, d̄ that were used in CTEQ6. As

mentioned in the text (section 4.2), we continue to use the approximation s(x) = s̄(x) ∝
ū(x) + d̄(x). The full set of formulas for the initial PDFs at µ0 = 1.3GeV is

uv(x), dv(x), g(x) = A0 xA1−1 (1 − x)A2 e−A3(1−x)2 + A4x2

(B.5)

ū(x) + d̄(x) = 1
2 A0 xA1−1 (1 − x)A2 eA3x (1 + xeA4)A5 (B.6)

d̄(x)/ū(x) = eA1 xA2−1 (1 − x)A3 + (1 + A4x) (1 − x)A5 (B.7)

s(x) = s̄(x) = 1
2 κ (ū(x) + d̄(x)) (B.8)

c(x) = c̄(x) = b(x) = b̄(x) = 0 (B.9)

(Notes regarding these formulas: the parameter A1 is shifted from the a1 above to make

it correspond in definition to the standard Regge intercept; the parameters a3 and a4 are

replaced by linear combinations A3 and A4 to reduce their correlation in the fitting by

making them control behavior at large and small x; the parameter A4 in ū + d̄ is defined

using an exponential form to ensure positivity of the PDFs.)

For concreteness, we give in table 2 the coefficients that correspond to the central fit

CTEQ6.5M. The value of κ is 0.5; and the strong coupling constant αs(MZ) is 0.118. We

use Mc = 1.3GeV, Mb = 4.5GeV.

A0 A1 A2 A3 A4 A5

uv 5.76388 0.64416 2.31531 0.74528 −2.14868

dv 3.65786 0.62677 3.31531 0.87977 −2.37338

g 0.09974 0.22853 4.00000 −4.23974 8.64169

d̄ + ū 0.29563 −0.22165 12.09400 6.46763 4.51075 0.26278

d̄/ū 11.49257 5.64186 17.00000 19.41872 9.45863
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